Reactive hyperemia in the human liver.

نویسندگان

  • Helmut G Hinghofer-Szalkay
  • Nandu Goswami
  • Andreas Rössler
  • Erik Grasser
  • Daniel Schneditz
چکیده

We tested whether hepatic blood flow is altered following central hypovolemia caused by simulated orthostatic stress. After 30 min of supine rest, hemodynamic, plasma density, and indocyanine green (ICG) clearance responses were determined during and after release of a 15-min 40 mmHg lower body negative pressure (LBNP) stimulus. Plasma density shifts and the time course of plasma ICG concentration were used to assess intravascular volume and hepatic perfusion changes. Plasma volume decreased during LBNP (-10%) as did cardiac output (-15%), whereas heart rate (+14%) and peripheral resistance (+17%) increased, as expected. On the basis of ICG elimination, hepatic perfusion decreased from 1.67 +/- 0.32 (pre-LBNP control) to 1.29 +/- 0.26 l/min (-22%) during LBNP. Immediately after LBNP release, we found hepatic perfusion 25% above control levels (to 2.08 +/- 0.48 l/min, P = 0.0001). Hepatic vascular conductance after LBNP was also significantly higher than during pre-LBNP control (21.4 +/- 5.4 vs. 17.1 +/- 3.1 ml.min(-1).mmHg(-1), P < 0.0001). This indicates autoregulatory vasodilatation in response to relative ischemia during a stimulus that has cardiovascular effects similar to normal orthostasis. We present evidence for physiological post-LBNP reactive hyperemia in the human liver. Further studies are needed to quantify the intensity of this response in relation to stimulus duration and magnitude, and clarify its mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Histopathological Study of Protective Effects of Honey on Subacute Toxicity of Acrylamide-Induced Tissue Lesions in Rats’ Brain and Liver

Background: The therapeutic potential of honey is related to antioxidant activity against reactive oxygen species because it contains compounds such as polyphenols; therefore, we evaluated the potential protective effect of honey on subacute toxicity of ACR by histopathologic study on tissue lesions in rat. Methods: In Ferdowsi University of Mashhad, Mashhad, Iran, 2016, male Wistar rats were ...

متن کامل

The Effect of Concurrent Training and Chlorogenic Acid Intake on Liver Enzymes and C-reactive Protein in Obese Women

  Background & objectives: Due to the prevalence of obesity and the subsequent development of metabolic risk factors, cardiovascular and fatty liver complications, exercise programs and the use of natural supplements can play a significant role in controlling and preventing these diseases. Therefore, the purpose of this study was to review the effect of eight weeks of combined exercise and Chlo...

متن کامل

Impairments in microvascular reactivity are related to organ failure in human sepsis.

Severe sepsis is a systemic inflammatory response to infection resulting in acute organ dysfunction. Vascular perfusion abnormalities are implicated in the pathology of organ failure, but studies of microvascular function in human sepsis are limited. We hypothesized that impaired microvascular responses to reactive hyperemia lead to impaired oxygen delivery relative to the needs of tissue and t...

متن کامل

Reactive hyperemia index (RHI) and cognitive performance indexes are associated with histologic markers of liver disease in subjects with non-alcoholic fatty liver disease (NAFLD): a case control study

BACKGROUND No study evaluated vascular health markers in subjects with non-alcoholic fatty liver disease (NAFLD) through a combined analysis of reactive hyperemia peripheral arterial tonometry (RH-PAT) and arterial stiffness indexes. AIM OF THE STUDY We aimed to assess whether NAFLD and its histological severity are associated with impairment of arterial stiffness and RH-PAT indexes in a mixe...

متن کامل

Inhibition of vascular ATP-sensitive K+ channels does not affect reactive hyperemia in human forearm.

The extent to which ATP-sensitive K(+) channels contribute to reactive hyperemia in humans is unresolved. We examined the role of ATP-sensitive K(+) channels in regulating reactive hyperemia induced by 5 min of forearm ischemia. Thirty-one healthy subjects had forearm blood flow measured with venous occlusion plethysmography. Reactive hyperemia could be reproducibly induced (n = 9). The contrib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 295 2  شماره 

صفحات  -

تاریخ انتشار 2008